
The Planets Interoperability Framework

Scalable Services for Digital Preservation

DPE, Planets and CASPAR Third Annual Conference:
Costs, Benefits and Motivations for Digital Preservation

30. October 2008

Ross King, Christian Sadilek, Rainer Schmidt
Austrian Research Centers GmbH – ARC

Outline
 Planets Interoperability Framework

 Grids and Clouds

 Initial Experimental Results

The Planets Interoperability Framework
Motivation
 There are a number of functions that all (or nearly all) software

applications commonly need. These include functions such as
• Data persistence
• User management
• Authentication and Authorization
• Monitoring, Logging, and Notification

 The Interoperability Framework (IF) software components
provide these commonly required functions.

The Planets Interoperability Framework
 Defines an Service-Oriented Architecture for Digital Preservation

 Set of Services, Interfaces, a common Data Model

 Implements Common Services
 Authentication and Authorization, Monitoring, Logging, Notification, …

 Service Registration and Lookup

 Provides APIs for Applications that use Planets
 Testbed Experiments, Executing Preservation Plans

 Provides Workflow Enactment Service and Engine
 Components-based, XML serialization

The Problem of Scalability
 Planets is a preservation architecture based on Web Services

 Supports interoperability and a distributed environment

 Sufficient for a controlled experiments (Testbed)

 Not sufficient for handling a production environment
 Massively, uncontrolled user requests

 Mass migration of hundreds of TBytes of data

 Content Holders are faced with loosing vast amounts of data
 Sufficient computational resources in-house?

 There is a clear demand for incorporating Grid or Cloud Technology

Integrating Virtual Clusters and Clouds
 Basic Idea: Extending Planets SOA with Grid Services

 The Planets IF Job Submission Services
 Allow Job Submission to a PC cluster (e.g. Hadoop, Condor)

 Grid approach/standards (SOAP, HPC-BP, JSDL)

 Cluster nodes are instantiated from specific system images
 Most Preservation Tools are 3rd party applications

 Software need to be preinstalled on cluster nodes

 Cluster and JSS be instantiated in-house (e.g. a PC lab) or
on top of (leased) cloud resources (AWS EC2).
 Computation be moved to data or vice-versa

Planets
Services

Preservation Planning
and

Workflow Generation

reference

Integration – Planets Tiered Architecture

Clients Planets Service Context
Web/Grid
Services Resources

Workbench for
Testbed Experiments

Web Portal
Browser

Metadata
Store

Tools +
Format
Registry

Execution
Engine

Service
Registry

3rd Party
Tool

Services

Grid/Cloud
Execution
Services

lookup

maintain

Data Model

Workflow Def.

Production
Environment

Experimental
Environment
(qualitative)

Experimental Setup
 Amazon Elastic Compute Cloud (EC2)

 1 – 150 cluster nodes

 Custom image based on RedHat Fedora 8 i386

 Amazon Simple Storage Service (S3)
 max. 1TB I/O,

 ~32,5MBit/s download / ~13,8MBit/s upload (cloud internally)

 Apache Hadoop (v.0.18)
 MapReduce Implementation

 Pre-installed command line tools (e.g, ps2pdf)

Planets
Services

Preservation Planning
and

Workflow Generation

reference

Clients Planets Service Context
Web/Grid
Services Resources

Workbench for
Testbed Experiments

Web Portal
Browser

Metadata
Store

Tools +
Format
Registry

Execution
Engine

Service
Registry

3rd Party
Tool

Services

Grid/Cloud
Execution
Services

lookup

maintain

Data Model

Workflow Def.

Experimental Setup

JSDL

Virtual Node
(Xen)

JSS

Data Transfer Service

Cloud Infrastructure (EC2)

Storage
Infrastructure

(S3)

Virtual Cluster (Apache Hadoop)

Raw Data

Job Description File

Job

Experimental Results 1 – Scaling Job Size

0,00
1,00
2,00
3,00
4,00
5,00
6,00
7,00
8,00
9,00

10,00

1 10 100 1000

tasks

tim
e

[m
in

]

EC2 0,07 MB
EC2 7,5 MB
EC2 250 MB
SLE 0,07 MB
SLE 7,5 MB
SLE 250 MB

number of nodes = 5
x(1k) = 3,5 x(1k) = 4,4 x(1k) = 3,6

x(1k) = t_seq / t_parallel
and tasks = 1000

Experimental Results 2 – Scaling #Nodes

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

0 50 100 150

nodes

tim
e

[m
in

]

EC2 1000 x 0,07 MB

SLE 1000 x 0,07 MB

X
X

X
X X

X n=1, t=36, s = 0.72, e=72%

n=5, t=8, s=3.25, e=65%

n=10, t=4.5, s=5.8, e=58%

n=50, t=1.68, s=15.5, e=31%

n=100, t=1.03, s=25.2, e=25%

n=1 (local), s1=1, t=26

Conclusions
 Preservation systems will need to employ Grid/Cloud resources

 Therefore there is a need to bridge communities in the areas of digital libraries
and e-science.

 Cloud and virtual infrastructures provide a powerful solution for obtaining
on-demand access to computational resources.

 Planets IF Job Submission Service provides a first step
 Submission to virtual cluster of preservation nodes using Grid protocols.

 Performance scales roughly with the number of nodes, accounting for expected
overheads

 Many open issues remain! Security, reliability, standardization, legal aspects...

Thank you for your attention!
 Planets Project

http://www.planets-project.eu

 Contacts
Ross King ross.king@arcs.ac.at
Rainer Schmidt rainer.schmidt@arcs.ac.at

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:JobDefinition xmlns="http://www.example.org/"

xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"
xmlns:jsdl-posix="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://schemas.ggf.org/jsdl/2005/11/jsdl jsdl.xsd ">

<jsdl:JobDescription>
<jsdl:JobIdentification>
<jsdl:JobName>start vi</jsdl:JobName>

</jsdl:JobIdentification>
<jsdl:Application>
<jsdl:ApplicationName>ls</jsdl:ApplicationName>
<jsdl-posix:POSIXApplication>
<jsdl-posix:Executable>/bin/ls</jsdl-posix:Executable>
<jsdl-posix:Argument>-la file.txt</jsdl-posix:Argument>
<jsdl-posix:Environment name="LD_LIBRARY_PATH">/usr/local/lib</jsdl-posix:Environment>
<jsdl-posix:Input>/dev/null</jsdl-posix:Input>
<jsdl-posix:Output>stdout.${JOB_ID}</jsdl-posix:Output>
<jsdl-posix:Error>stderr.${JOB_ID}</jsdl-posix:Error>

</jsdl-posix:POSIXApplication>
</jsdl:Application>

</jsdl:JobDescription>
</jsdl:JobDefinition>

Sample JSDL code

Map-Reduce for Migrating Digital Objects
 Map-Reduce implements a framework and prog. model for processing

large documents (Sorting, Searching, Indexing) on multiple nodes.
 Automated decomposition (split)

 Mapping to intermediary pairs (map), optionally (combine)

 Merge output (reduce)

 Provides implementation for data parallel problems, i/o intensive,

 Example: Conversion digital object (e.g website, folder, archive)
 Decompose into atomic pieces (e.g. file, image, movie)

 On each node, convert piece to target format

 Merge pieces and create new data object

