

The CASPAR Artistic testbed

A precise case from artistic production : preservation of FM Synthesis

Jerome Barthelemy

Institut de Recherche et de Coordination Acoustique/Musique

Overview

- Context
 - Music production with digital components since the 70ies
 - CASPAR and OAIS : a formal approach
- An example
 - Diademes by M.A Dalbavie (1986)
 - The FM Synthesis problem
- Assessing authenticity
 - The composer's point of view
 - Other example of use of FM Synthesis : « Madonna of Winter and Spring » by Jonathan Harvey (1986)
- Authenticity in the CASPAR framework
 - Authenticity as a process
 - Examples of authenticity processes

Context : current state

- IRCAM : musical production since the 70es
- Development of audio/music digital processors :
 - 4A, 4X.... (Hardware)
 - Max/MSP (Software)
 - Audiosculpt, Modaly, OpenMusic... (software)
- Musical creation using audio digital processing
 - 450 works created since 77
- Problem of preservation recognized since the middle of the 80s, but no formal approach
 - Production of documentation (from 80es to 2000 in paper)
 - From 2002 : digital storage of documentation and digital objects : Mustica

Context : aims and goals

- To be able to REPERFORM the works
 - Not simply record audio files !
 - To make possible interactions between human performers and digital processes :
 - Preserve the processes themselves, not the results
 - What processes?
 - Digital instruments (audio effects, like reverberation, harmonizers...)
 - Encoded in the form of « software »

Context : CASPAR and OAIS

- OAIS : A formal approach to preservation :
 - provides the concepts needed by non-archival organizations to be effective participants in the preservation process;
 - provides a framework for the understanding and increased awareness of archival concepts needed for Long Term digital information preservation and access;
 - provides a foundation that may be expanded
- CASPAR : implements an OAIS compliant framework

An example: Diademes by M.A. Dalbavie

- Creation in 1986,
- Written for solo viola, acoustic orchestra and live electronic
- Live-electronic part :
 - 1 YAMAHA TX816 : FM-Synthesis for 2 Yamaha KX88 keyboards
 - 2 YAMAHA SPX1000 : Effects/Transformation of the viola: Harmonizer & Panning
 - 2 YAMAHA REV5 : Effects/Transformation of the viola: Reverberation & Echo
- Several new performances since 1986 (the last one in 1995)
- No new performance since 1995 (but several attempts), due to issues related to FM synthesis component

An example: Diademes by M.A. Dalbavie

- A new performance is foreseen at the end of this year (December New York)
- Necessary to port (and ensure the good performance of live electronics part)
- Most important criteria of « good performance »: Authenticity

An example: Diademes by M.A. Dalbavie

•Live-electronic part :

–1 YAMAHA TX816 : FM-Synthesis for 2 YamahaKX88 keyboards

-2 YAMAHA SPX1000 : Effects/Transformation of the viola: Harmonizer & Panning

–2 YAMAHA REV5 : Effects/Transformation of the viola: Reverberation & Echo

VIOLA SOLO \bigcirc C Violin 3 Violin 2 Violin 1 EFFECTS SPX1000 REV5 Panning YAMAHA TX816 Yamaha TX816 EM-SYNTHESIZE FM-SYNTHESIZER MIXER digital preservation e^{0} urope planets

ORIGINAL SETUP OF ELECTRONICS

An example: Diademes by M.A. Dalbavie

•FM Synthesis :

 Modulation of a waveform by another waveform (both in the audio range)

Original implementation
by Yamaha (under patent)

Results in « complex » sounds, not produceable by another means

FM Synthesis issue

- Since 1995 (patent expiration), hardware not maintained
- Several tries to port or emulate FM Synthesis on different systems
- Previous attempts software emulation :
 - By Ipke Starke, November 1998
 - By Colin Yates, December 2001
- Attempts not satisfying for the composer
- Approach chosen in 2008:
 - Record each FM Synthesis sound on the original hardware (fortunately available) according to thge limited set of parameters in use in Diademes

FM Synthesis issue

- Comparison with other works using the same hardware :
 - « Madonna of Winter and Spring » by Jonathan Harvey (also 1986)
 - Porting realized in 2006 using emulation by Native Instruments (not done in Ircam)
- Two different forms of emulation :
 - Diademes : recording of original sounds, and use of a software sampler
 - Madonna of Winter and Spring : FM Synthesis emulation

Other issues

- For harmonizer, panning, reverberation and echo :
 - Preference given to a modern effect
- A porting has been realized
 - According to the composer, he prefer in this case the modern effects.

FM Synthesis issue

- Different point of views
 - Composer (different point of views according to each « unique » vision)
 - Scientist : model (modulation of a waveform with another waveform)
 - Software developer : algorithm
 - Issue : how to cope with these different point of views, regarding « authenticity »?

Authenticity in CASPAR

- Authenticity is a process (Mariella Guercio, University Urbino)
- CASPAR defines Authenticity Protocols (AP)
 - Each one composed of several steps (AS)
- Must be executed at different steps according to the lifecycle of the object (access, migration...)
 - Each execution is composed of different execution steps (ASE)
 - The overall result should lead to an evaluation of the authenticity
- Defined accordingly to a Designated Community

Considerations on Authenticity (1)

- Need to attach different AP to different steps of the lifecycle. Example:
 - AP1 <-> Migration of component
 - AP2 <-> Maintenance
- Different AP for context
 - Dependent on the work in which is used (example of FMSynthesis)
 - Dependent from the point of view of community
 - Developers
 - Musical assistant
 - Curators

Considerations on Authenticity (2)

- End users unable to create « Authenticity protocols » from scratch
 - Different roles for curator and musical assistant
- Need to have templates and customization
 - Curator creates templates
 - Musical assistant customize
- An example of an authenticity protocol template, for an audio processing effect migration (AFX1 -> AFX2):
 - Provide sound samples in input (SI1.. SOn)
 - Provide sound samples in output (SO11. SOn)
 - Apply AFX2 to SI1..Sin (get SO2

Compare SO1..Son with SO2..Son according to features F1.Fn

Authenticity protocol #1

- Case : maintenance (audio file)
 - Compute fixity
 - Verify provenance

Authenticity protocol #2

- Case : migration of audio file, from format f1 to format f2
- AS1 before migration : verify semantics (is it an audio file) ?
 - Yes : continue
 - No : failure apply another protocol suitable to the right semantics
- AS2 verify file not compressed
 - Yes : continue
 - No : uncompress (or return to analog!)
- AS3 before migration : verify availability of source sampling rate and sampling size in target format f2
 - Yes : continue
 - No : failure apply another protocol
- AS4 after migration : compute fixity of sample size and sample rate
 - Yes : continue
 - No : failure apply another protocol
- AS5 after migration : compute fixity of Pulse Code Modulation from audio files
 - Yes : continue
 - No : failure apply another protocol

Authenticity protocol #3

- Case : migration of an audio effect (AFX1 -> AFX2) ٠
 - Ingest phase (AP1):
 - AS1 : Define a list of audio samples in input (using predefined audio samples 1khz sinusoid...)
 - AS2 : Apply to them the audio effect AFX1, and store the output audio samples
 - AS3 : Define the comparison features (with range) that are to be validated when executing AP2
 - Migration phase (AP2) :
 - AS1 : Apply to input audio files the migrated audio effect AFX2 and store the results
 - AS2 : Compare the audio samples resulting from AFX2 to those resulting from AFX1, according to features defined in AP1

Conclusion

- From Mustica to MustiCASPAR:
 - Management of the archive lifecycle :
 - Support of Ingest and Access based on Representation Information
 - Support of Provenance, Context
 - Support of notifications (unavailability of components, changes in the knowledge...)
 - Support of Authenticity
 - Conforms to standards:
 - CIDOC-CRM (RDF) for Description
 - XFDU for packaging
 - OAIS...

