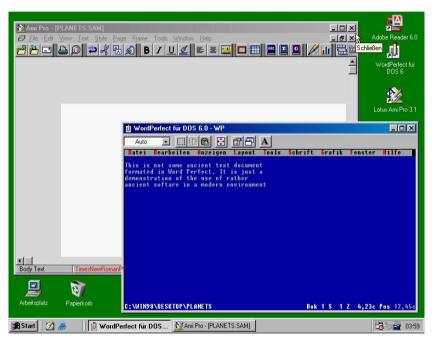
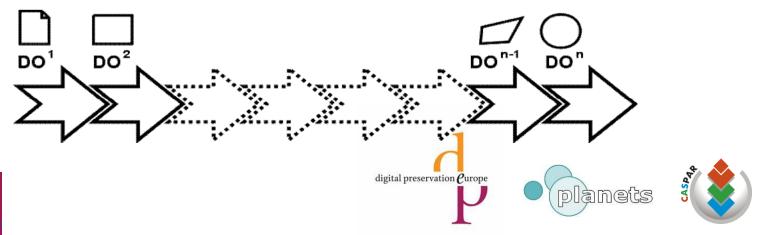


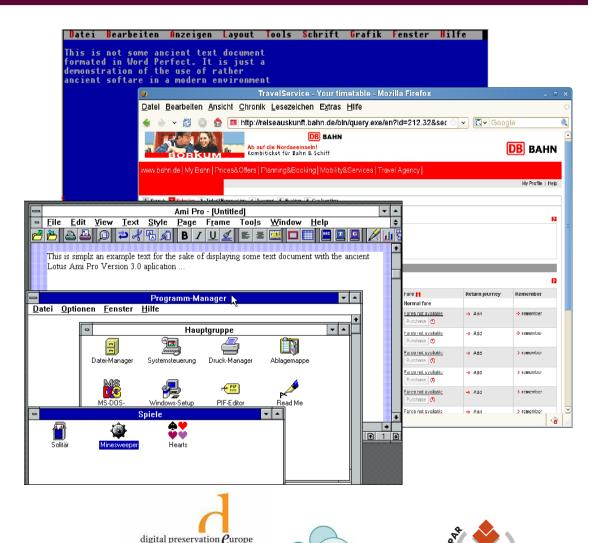
WePreserve Conference 28.-30. October Nice, France

Emulation: Bridging the Past to the Future without Altering the Object


*Dirk von Suchodoletz, Randolph Welte University of Freiburg – Department of Computer Science

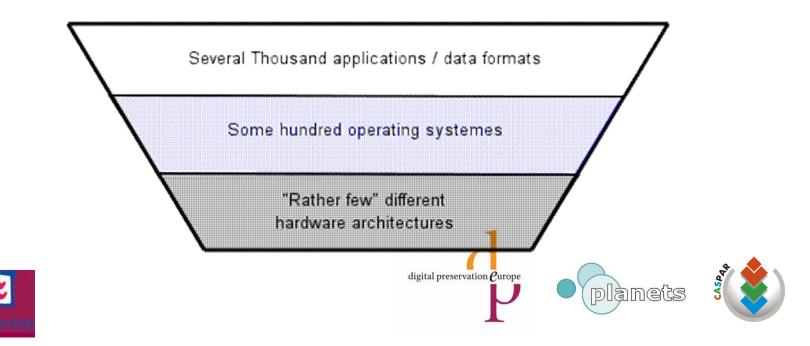


Preservation Challenges

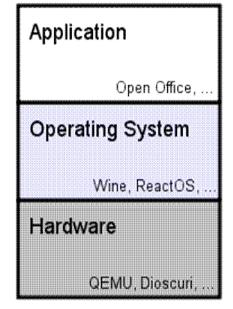

- Digital objects require software / hardware environments to be accessed
- Environments change over the time and obsolete most of digital material
- Mainline strategy: *Migration*
 - Risky to rely on it exclusivly
 - Not suitable for all object types

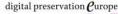
Dynamic Digital Objects

- Dynamic digital objects
 - Applications
 - Operating systems
 - Databases
- Non-linear, user interaction, multiple views
- No real option:
 - Printing of source, adaption to recent environments; even if source code available
 - Video-recording, screenshots of game or application session

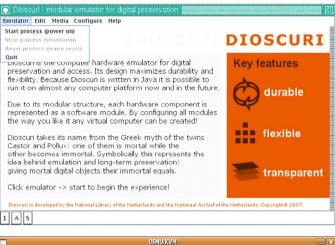


planets


- Emulation no changes on the object, but recreation of original environment
 - Emulators around for quite a while, supplemented by virtualization
 - Can operate on different layers of software/hardware stack
 - Number of objects to cover differs significantly; thus hardware layer seems very attractive to focus on
- Help to bridge widening gap of the computers past to the future


Emulation Layers

- Different options (text doc, game examples))
 - MS Word document in OpenOffice
 - Running MS Word 97 in Wine on Linux X86
 - Emulation of X86 machine to run complete
 Windows 98 environment with MS Word installed
- Depends on the type of object
 - Proprietary formats may prevent proper interpretation
 - OS, application APIs often obfuscated (MS)



Emulator Examples

- Dioscuri X86 emulator recreating an 286, 386 PC of the early 1990th
 - Java programming language, modular approach – components like disk, floppy, VGA, CPU, RAM put together to form the machine
 - Running DOS and Windows 3.0
 - Step by step extension to 486++
- QEMU using popular C programming language multi architecture emulator for X86, PPC, Sparc, ...
 - Large user community
 - Actively developed
- Both Open Source no vendor dependencies, adaptable

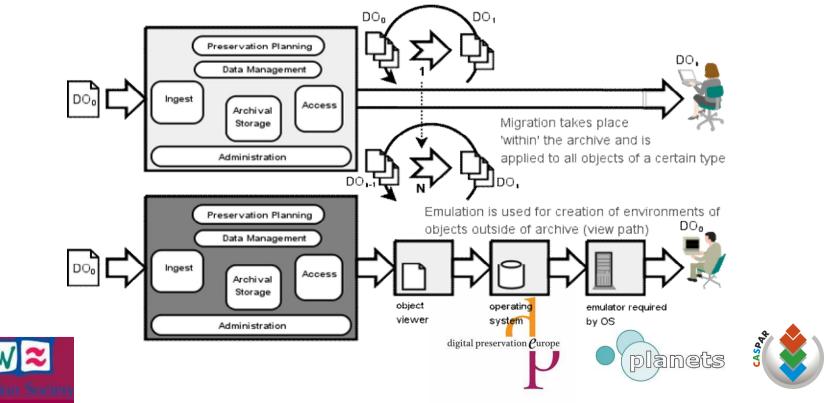
Plex86/Bochs UGABios current-cvs 07 Jan 2008 This UGA/UBE Bios is released under the GNU LGPL Please wisit :

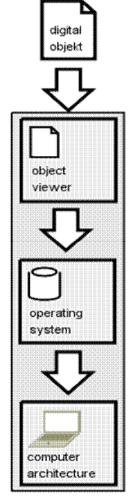
lease visit : . http://bochs.sourceforge.net . http://www.nongnu.org/vgabios

cirrus-compatible VGA is detected

QEMU BIOS – build: 07/09/08 ŠRevisium: 1.182 Š ŠDate: 2007/08/01 17:09:51 Š Options: apmbios pcibios eltorito rombios32

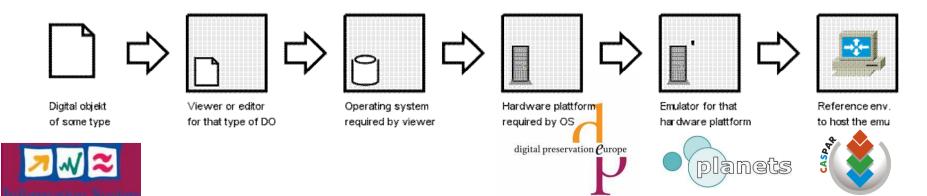
tal master: QEMH DVD-ROM ATAPI-4 CD-Rom/DVD-Rom

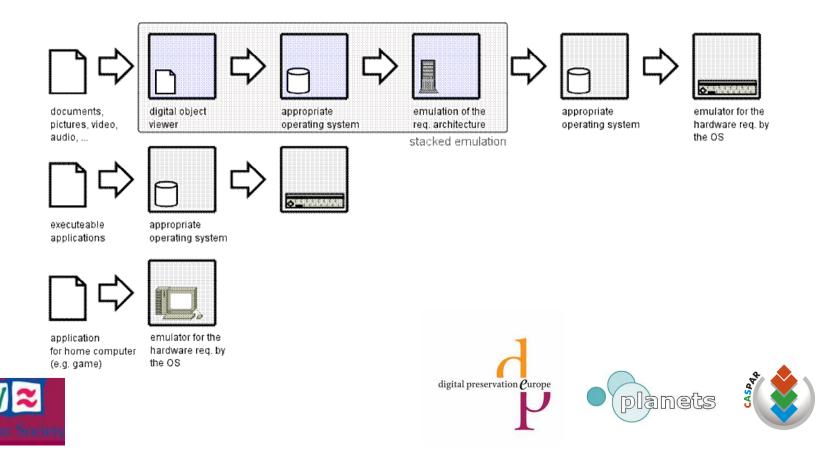

Booting from Hard Disk... Boot From Hard Disk failed: could not read the boot disk Booting from Floppy... Boot from Floppy failed: could not read the boot disk Booting from CD-Rom... CDROM boot failure code : 0003 Boot from CD-Rom failed: could not read the boot disk FATAL: No bootable device.


- Independently of migration or emulation digital object is to be handled somehow
 - (Re)creation of a certain hardware software environment for access / execution
- Standard workplace environments for migrated objects, but ...

Requirements

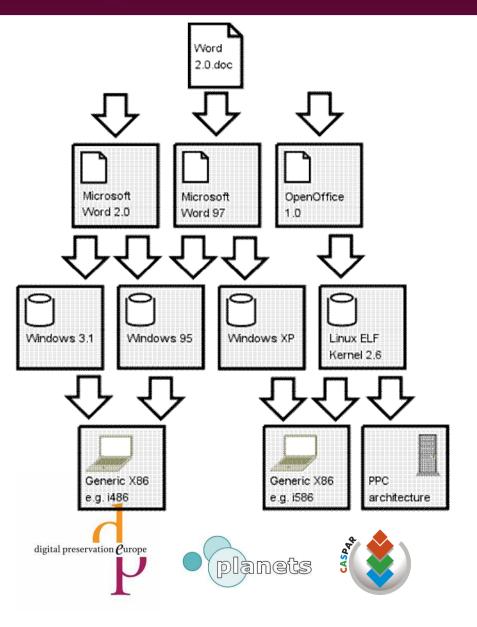
- Emulation not working just on its own additional software is required
- Emulation approach requires recreation of ancient hardware / software environments for access / execution
 - E.g. spreadsheet document requires the proper spreadsheet application for interpretation and displaying
 - Spreadsheet software is dependent on an operation system
 - Operating system was programmed for a very specific or a range of hardware architectures
 - Additional components like fonts might be needed for range of documents, especially for non-latin typesets
- Object transport into viewing / execution environment to be taken care of




View Path

- View Path pathway from object to specific environment
- Reference environment specifically defined software hardware combination for object access, rendering
- Formalization needed view path as the requirements to be followed to actually access, display the object of interest
- Introduced with Preservation Layer Model (PLM) of IBM/DIAS project
- Concept extended in the ongoing project
 - More flexible layout
 - Introduction of metrics for multiple view path
 - Match to users, organizational needs significant properties

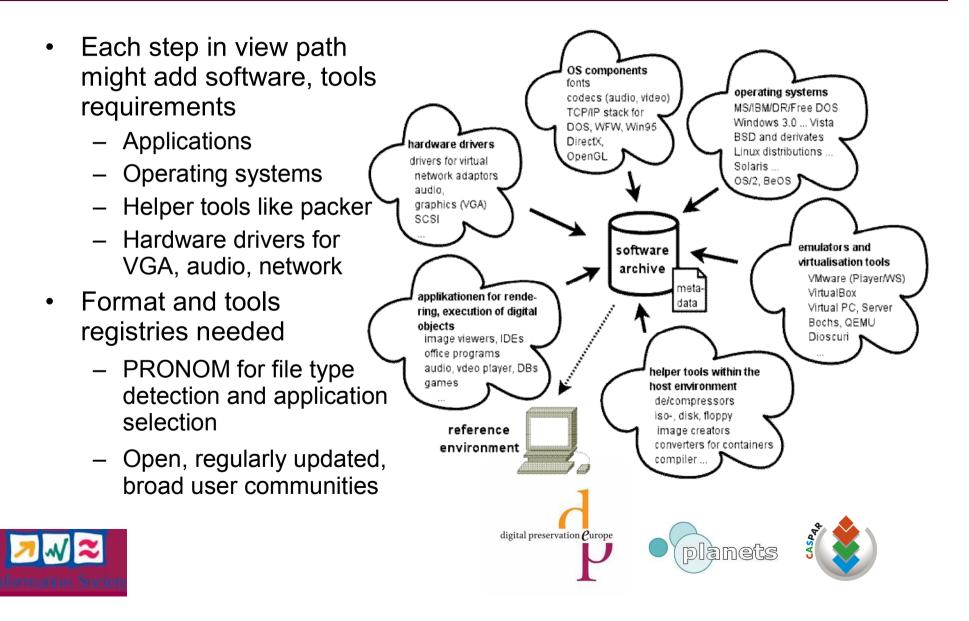
Werreserve View Path Characteristics


- Variable length; depending on
 - Type of object and platform (image, document, application ...)
 - Emulator preservation strategy getting longer with emulation stacking

View Path Metrics

- Often more than one view path exists
 - Depending on object more than one renderer available
 - Rendering / execution results may differ (significantly))
 - Less and more simple, expensive view path
- Introduce metrics for decision making in preservation planning processes
- Offer users options to choose depending on their research interest, preferences

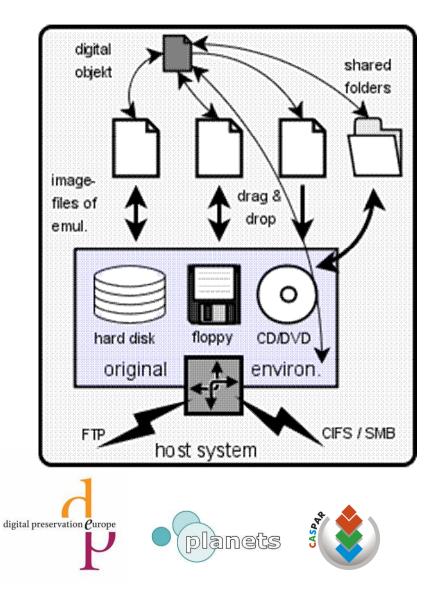
Significant Properties


- View paths not fixed for other dimensions too
- Significant properties highly debated term in digital preservation
 - Determine options how to preserve objects
 - Evaluate and compare preservation strategies and outcomes
- Metrics could be related to significant properties
 - Definitely depended on the designated user communities
 - Archivists, librarians, computer museum curators or retro gamers may not share same vision of significant properties of objects
 - E.g. ask for a definition of the term "authenticity" to get a wide range of good answers
- Use metrics to include users experience, feedback to improve results for similar objects (comparable to recommender systems)

Software Archive

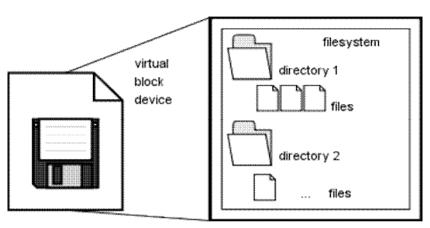
Additional Components

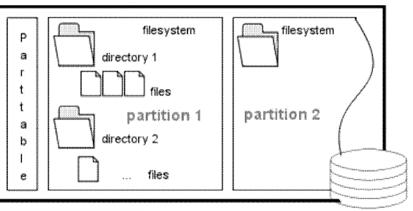
- Additional information and metadata needed in software archive
 - Application handbooks
 - Howtos and trouble shooting guides
 - Application update packages
 - License keys, access codes
- Depending on object
 - Fonts for documents
 - Codecs for video, audio
 - Software extensions like DirectX, OpenGL libraries



Data Exchange

- After object digest out of archive or user data of other sources
 - Transport into emulation environment
 - After or during enviroment setup
- Means of object transport
 - Virtual optical (ISO) or floppy disks as images
 - Disk container files
 - Network connections like FTP, SMB/CIFS
 - "Shared Folders" (as e.g. found in VMware or VirtualBox)
 - Copy&Paste (e.g. text areas in Dioscuri)

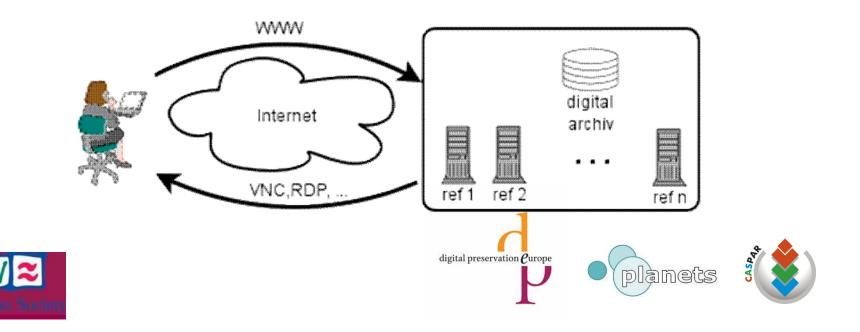


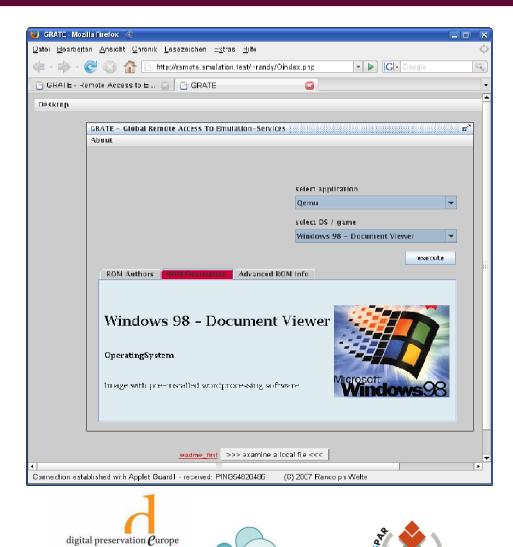


Transport Containers

- Data transport requires fromats understood by the target environment, e.g.
 - Floppy disks, ubiquious in for many platforms for a rather long period
 - Images easy to create and store
 - Optical disks: ISO images well understood by many emus
- More complex
 - Container files of the several emulators
 - Creator tools required
 - Adding objects to disk container files before emulators started

block orientated, non volatile storage (harddisk, floppy....)

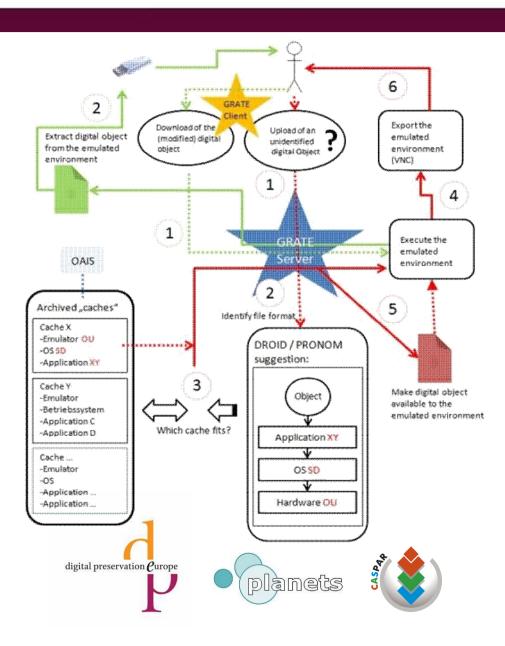



Reference Environment

- Emulation might require quite some steps until object is actually accessible
 - Average archive user is often not trained computer professional
 - Lots of problems to setup emulation environment on average machines
 - Many software components needed are proprietary
- Workstations with defined environment e.g. in library reading rooms
- Offer pre-created environments over the network

wereserve Web Access for Emulation

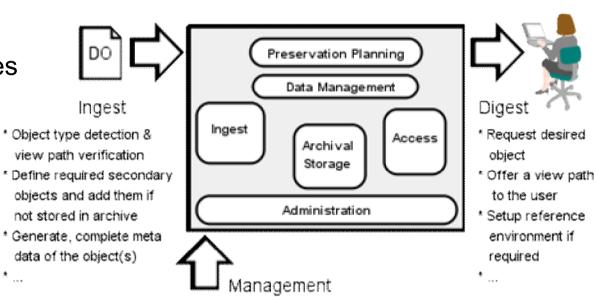
- Global remote access to emulation (services)
 - Access to different emulation enviroments like Dioscuri, MESS, QEMU, ... for Windows 3.11, Windows 98, C64, Atari, ...
 - Up- and download of objects over the net
 - PRONOM detection of object type and view path suggestion
 - Starting the appropriate emulator and software environment for object access


plamets

- Client Server application for remote operation
 - Client side: Java application executable in average browsers with JRE 1.5
 - Server side: Standard Linux environment to host the several emulators
 - Open Source
 - Extensible to more emulators, environments
 - Please have a look at our poster explaining the tool a little bit more!

Archive Management

- Additonal archival objects required for view path handling and required software environments
- Storage of view path caches for fast access in GRATE or specifically defined reference workstations
- View path aggregation of often used environments
- With this information define and use metrics to calculate archive management costs
 - Differentiate view path options
 - Get cost structures to preserve certain object types
 - Evaluate shared, distributed archive approaches to local ones



Emulation in OAIS

- **Emulation requires** ٠ certain archive management activities on
 - Ingest
 - Operation
 - Digest
- **Emulation might** • require OAIS extension
 - Suggestions from the list of archival tasks explained

۰

- * Check view paths on a regular base, especially if reference environments changed
- * Add emulators if required and migrate existing ones if needed, discard obsoleted *

Thank you! Questions!?

- □ Randolph Welte
 - rwelte@uni-freiburg.de
- Dirk von Suchodoletz
 - dsuchod@uni-freiburg.de

e <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp		
🔳 🕶 🗼 👻 🧭 💮 🏠 📄 http://grate-test-server//NC/index-vnc-temp46585.php	▼ ► Google	
GRATE - Remote Access to Emulation 🖸 📄 GRATE	GRATE	
Dioscuri - modular emulator for digital preservation	巴	a
Emulator Edit Media Configure Help		-
590768 largest executable program size		
C:>>dir		
Volume in drive C is MSD0S5		
Volume Serial Number is 2507-13CB		
Directory of C:N		
COMMAND COM 47845 11-11-91 5:00a AUTOEXEC BAT 53 05-05-95 11:59a		
CONFIG SYS 48 05-05-95 11:59a		
MSDOS5 <dir> 05-05-95 11:59a C BAT 49.05-05-95 11:59a</dir>		
WP51 <dir> 08-31-07 5:50p</dir>		
WPFILES <dir> 03-03-08 2:20p GAMES <dir> 07-14-08 3:45p</dir></dir>		
8 file(s) 47995 bytes		
4837376 bytes free		
C:N>ver		
MS-DOS Version 5.00		
C:>>		
1 A S HD1		
		_
nnection established with VNCGuard received: PING32531731 (C) 2007 Randolph Welte		

 www.ks.unifreiburg.de/projekte/fla

